Dual encoders are now the dominant architecture for dense retrieval. Yet, we have little understanding of how they represent text, and why this leads to good performance. In this work, we shed light on this question via distributions over the vocabulary. We propose to interpret the vector representations produced by dual encoders by projecting them into the model's vocabulary space. We show that the resulting distributions over vocabulary tokens are intuitive and contain rich semantic information. We find that this view can explain some of the failure cases of dense retrievers. For example, the inability of models to handle tail entities can be explained via a tendency of the token distributions to forget some of the tokens of those entities. We leverage this insight and propose a simple way to enrich query and passage representations with lexical information at inference time, and show that this significantly improves performance compared to the original model in out-of-domain settings.
translated by 谷歌翻译
Action recognition models have achieved impressive results by incorporating scene-level annotations, such as objects, their relations, 3D structure, and more. However, obtaining annotations of scene structure for videos requires a significant amount of effort to gather and annotate, making these methods expensive to train. In contrast, synthetic datasets generated by graphics engines provide powerful alternatives for generating scene-level annotations across multiple tasks. In this work, we propose an approach to leverage synthetic scene data for improving video understanding. We present a multi-task prompt learning approach for video transformers, where a shared video transformer backbone is enhanced by a small set of specialized parameters for each task. Specifically, we add a set of ``task prompts'', each corresponding to a different task, and let each prompt predict task-related annotations. This design allows the model to capture information shared among synthetic scene tasks as well as information shared between synthetic scene tasks and a real video downstream task throughout the entire network. We refer to this approach as ``Promptonomy'', since the prompts model a task-related structure. We propose the PromptonomyViT model (PViT), a video transformer that incorporates various types of scene-level information from synthetic data using the ``Promptonomy'' approach. PViT shows strong performance improvements on multiple video understanding tasks and datasets.
translated by 谷歌翻译
一个人如何在没有特定任务的固定或任何模型修改的情况下将预训练的视觉模型调整为新颖的下游任务?受到NLP提示的启发,本文研究了视觉提示:在测试时间和新输入图像时,给定的输入输出图像示例示例,目标是自动生成输出图像,与给定的示例一致。我们表明,将这个问题作为简单的图像插入,实际上只是填充了串联的视觉提示图像中的一个孔 - 只要已经对正确的数据训练了介入算法,就非常有效。我们在我们策划的新数据集上训练蒙面的自动编码器-88K未标记的数字来自ARXIV上的学术报纸来源。我们将视觉提示应用于这些预处理的模型,并在各种下游图像到图像任务上展示结果,包括前景分割,单个对象检测,着色,边缘检测等。
translated by 谷歌翻译
在处理表格数据时,基于回归和决策树的模型是一个流行的选择,因为与其他模型类别相比,它们在此类任务上提供了高精度及其易于应用。但是,在图形结构数据方面,当前的树学习算法不提供管理数据结构的工具,而不是依靠功能工程。在这项工作中,我们解决了上述差距,并引入了图形树(GTA),这是一个新的基于树的学习算法,旨在在图形上操作。 GTA既利用图形结构又利用了顶点的特征,并采用了一种注意机制,该机制允许决策专注于图形的子结构。我们分析了GTA模型,并表明它们比平原决策树更具表现力。我们还在多个图和节点预测基准上证明了GTA的好处。在这些实验中,GTA始终优于其他基于树的模型,并且通常优于其他类型的图形学习算法,例如图形神经网络(GNNS)和图核。最后,我们还为GTA提供了一种解释性机制,并证明它可以提供直观的解释。
translated by 谷歌翻译
该技术报告描述了无回报(PNR)时间定位挑战的EGO4D点的SVIT方法。我们提出了一个学习框架的结构(简称SVIT),该结构证明了仅在训练过程中仅可用的少量图像的结构才能改善视频模型。SVIT依靠两个关键见解。首先,由于图像和视频都包含结构化信息,因此我们用一组\ emph {对象令牌}丰富了一个可以在图像和视频中使用的\ emph {对象令牌}的模型。其次,视频中各个帧的场景表示应与静止图像的场景表示“对齐”。这是通过“框架夹一致性”损失实现的,该损失可确保图像和视频之间结构化信息的流动。SVIT在挑战测试集上获得了强劲的性能,并具有0.656绝对时间定位误差。
translated by 谷歌翻译
最近的动作识别模型通过整合对象,其位置和互动来取得令人印象深刻的结果。但是,为每个框架获得密集的结构化注释是乏味且耗时的,使这些方法的训练昂贵且可扩展性较低。同时,如果可以在感兴趣的域内或之外使用一小部分带注释的图像,我们如何将它们用于下游任务的视频?我们提出了一个学习框架的结构(简称SVIT),该结构证明了仅在训练过程中仅可用的少量图像的结构才能改善视频模型。 SVIT依靠两个关键见解。首先,由于图像和视频都包含结构化信息,因此我们用一组\ emph {对象令牌}丰富了一个可以在图像和视频中使用的\ emph {对象令牌}的模型。其次,视频中各个帧的场景表示应与静止图像的场景表示“对齐”。这是通过\ emph {frame-clip一致性}损失来实现的,该损失可确保图像和视频之间结构化信息的流动。我们探索场景结构的特定实例化,即\ emph {手对象图},由手和对象组成,其位置为节点,以及触点/no-contact的物理关系作为边缘。 SVIT在多个视频理解任务和数据集上显示出强烈的性能改进;它在EGO4D CVPR'22对象状态本地化挑战中赢得了第一名。对于代码和预算模型,请访问\ url {https://eladb3.github.io/svit/}的项目页面
translated by 谷歌翻译
监督学习通常依赖于真实标签的手动注释。当有许多潜在的类别时,寻找最佳的班级对于人类注释者可能会过时。另一方面,比较两个候选标签通常要容易得多。我们专注于这种成对的监督,并询问如何有效地用于学习,尤其是在积极学习中。在这种情况下,我们获得了一些有见地的结果。原则上,可以使用$ K-1 $ Active查询来找到最好的$ K $标签。我们表明,有一种自然阶级,这种方法是最佳选择的,并且有更具比较的主动学习方案。我们分析中的一个关键要素是真实分布的“标签邻域图”,如果两个类共享决策边界,则在两个类之间具有优势。我们还表明,在PAC设置中,成对比较在最坏情况下不能提供改善的样品复杂性。我们通过实验补充了理论结果,清楚地证明了邻里图对样品复杂性的影响。
translated by 谷歌翻译
对于开放式域问题的密集检索已被证明通过在问题通道对的大型数据集上培训来实现令人印象深刻的性能。我们调查是否可以以自我监督的方式学习密集的检索,并有效地应用没有任何注释。我们观察到这种情况下的检索斗争的现有借用模型,并提出了一种设计用于检索的新预制方案:重复跨度检索。我们在文档中使用经常性跨度来创建用于对比学习的伪示例。由此产生的模型 - 蜘蛛 - 在广泛的ODQA数据集上没有任何示例,并且与BM25具有竞争力,具有强烈的稀疏基线。此外,蜘蛛通常优于DPR在其他数据集的问题上培训的DPR培训的强大基线。我们将蜘蛛与BM25结合的混合猎犬改进了所有数据集的组件,并且通常与域中DPR模型具有竞争力,这些模型培训数万例培训。
translated by 谷歌翻译
最近,视频变压器在视频理解方面取得了巨大成功,超过了CNN性能;然而,现有的视频变换器模型不会明确地模拟对象,尽管对象对于识别操作至关重要。在这项工作中,我们呈现对象区域视频变换器(Orvit),一个\ emph {对象为中心}方法,它与直接包含对象表示的块扩展视频变压器图层。关键的想法是从早期层开始融合以对象形式的表示,并将它们传播到变压器层中,从而影响整个网络的时空表示。我们的orvit块由两个对象级流组成:外观和动态。在外观流中,“对象区域关注”模块在修补程序上应用自我关注和\ emph {对象区域}。以这种方式,Visual对象区域与统一修补程序令牌交互,并通过上下文化对象信息来丰富它们。我们通过单独的“对象 - 动态模块”进一步模型对象动态,捕获轨迹交互,并显示如何集成两个流。我们在四个任务和五个数据集中评估我们的模型:在某事物中的某些问题和几次射击动作识别,以及在AVA上的某些时空动作检测,以及在某种东西上的标准动作识别 - 某种东西 - 东西,潜水48和EPIC-Kitchen100。我们在考虑的所有任务和数据集中展示了强大的性能改进,展示了将对象表示的模型的值集成到变压器体系结构中。对于代码和预用模型,请访问项目页面\ url {https://roeiherz.github.io/orvit/}
translated by 谷歌翻译
微调是深度学习的常见做法,使用相对较少的训练数据来实现卓越的普遍性导致下游任务。虽然在实践中广泛使用,但它缺乏强烈的理论理解。我们分析了若干架构中线性教师的回归的本方案的样本复杂性。直观地,微调的成功取决于源任务与目标任务之间的相似性,但是测量它是非微不足道的。我们表明相关措施考虑了源任务,目标任务和目标数据的协方差结构之间的关系。在线性回归的设置中,我们表明,在现实的情况下,当上述措施低时,在实际设置下,显着的样本复杂性降低是合理的。对于深线性回归,我们在用预制权重初始化网络时,我们提出了关于基于梯度训练的感应偏差的新颖结果。使用此结果,我们显示此设置的相似度量也受网络深度的影响。我们进一步在浅relu模型上显示结果,并分析了在源和目标任务中的样本复杂性的依赖性。我们经验证明了我们对合成和现实数据的结果。
translated by 谷歌翻译